- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Tang, E. (3)
-
Baeßler, S. (2)
-
Balascuta, S. (2)
-
Barrón-Palos, L. (2)
-
Blyth, D. (2)
-
Cianciolo, V. (2)
-
Craycraft, K. (2)
-
Fomin, N. (2)
-
Fry, J. (2)
-
Hamblen, J. (2)
-
Hayes, C. (2)
-
Kucuker, S. (2)
-
McCrea, M. (2)
-
Tang, E (2)
-
Tang, Z. (2)
-
Tong, X. (2)
-
Alarcon, R (1)
-
Alarcon, R. (1)
-
Alonzi, L (1)
-
Alonzi, L. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the problem of finding a (pure) product state with optimal fidelity to an unknown n-qubit quantum state ρ, given copies of ρ. This is a basic instance of a fundamental question in quantum learning: is it possible to efficiently learn a simple approximation to an arbitrary state? We give an algorithm which finds a product state with fidelity ε-close to optimal, using N=npoly(1/ε) copies of ρ and poly(N) classical overhead. We further show that estimating the optimal fidelity is NP-hard for error ε=1/poly(n), showing that the error dependence cannot be significantly improved. For our algorithm, we build a carefully-defined cover over candidate product states, qubit by qubit, and then demonstrate that extending the cover can be reduced to approximate constrained polynomial optimization. For our proof of hardness, we give a formal reduction from polynomial optimization to finding the closest product state. Together, these results demonstrate a fundamental connection between these two seemingly unrelated questions. Building on our general approach, we also develop more efficient algorithms in three simpler settings: when the optimal fidelity exceeds 5/6; when we restrict ourselves to a discrete class of product states; and when we are allowed to output a matrix product state.more » « lessFree, publicly-accessible full text available March 31, 2026
-
Tang, E.; Virk, S.; Underhill, P. (, ArXivorg)
-
Fomin, N; Alarcon, R; Alonzi, L; Askanazi, E; Baeßler, S; Balascuta, S; Barrón-Palos, L; Barzilov, A; Blyth, D; Bowman, J D; et al (, Physical Review C)
-
Musgrave, M.M.; Baeßler, S.; Balascuta, S.; Barrón-Palos, L.; Blyth, D.; Bowman, J.D.; Chupp, T.E.; Cianciolo, V.; Crawford, C.; Craycraft, K.; et al (, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment)
-
Blyth, D.; Fry, J.; Fomin, N.; Alarcon, R.; Alonzi, L.; Askanazi, E.; Baeßler, S.; Balascuta, S.; Barrón-Palos, L.; Barzilov, A.; et al (, Physical Review Letters)
An official website of the United States government

Full Text Available